

15MAT11

First Semester B.E. Degree Examination, Feb./Mar. 2022 Engineering Mathematics - I

Time: 3 hrs .

- Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the $n^{\text {th }}$ derivative of $e^{a x} \cos (b x+c)$
(05 Marks)
b. Show that the curves $\mathrm{r}=\mathrm{a}(1+\cos \theta)$ and $\mathrm{r}=\mathrm{b}(1-\cos \theta)$ cut orthogonally.
(05 Marks)
c. Show that the radius of curvature at $(a, 0)$ on the curve $y^{2} x=a^{2}(a-x)$ is $a / 2$.

OR

2 a. Find the $\mathrm{n}^{\text {th }}$ derivative of

$$
\frac{x}{(x-1)^{2}(x+2)}
$$

(05 Marks)
b. If $\cos ^{-1}\left(\frac{y}{b}\right)=\log \left(\frac{x}{n}\right)^{n}$ prove that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+2 n^{2} y_{n}=0$
(06 Marks)
c. Find the angle between the radius vector and the tangent for the curve

$$
\mathrm{r}^{\mathrm{m}}=\mathrm{a}^{\mathrm{m}}(\cos \mathrm{~m} \theta+\sin \mathrm{m} \theta)
$$

(05 Marks)

Module-2

3 a. Evaluate $\underset{x \rightarrow 0}{\text { lt }} \frac{\sinh x-\sin x}{x \sin ^{2} x}$
(05 Marks)
b. If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ show that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2}=\frac{-9}{(x+y+z)^{2}}$
c. If $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$ and $z=r \cos \theta$ find $J=\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$
(06 Marks)

OR

4 a. Obtain Maclaurin's expansion of $\log \left(1+e^{x}\right)$
(05 Marks)
b. Evaluate $\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}+d^{x}}{4}\right)^{1 / x}$
(06 Marks)
c. If $u=F(x-y, y-z, z-x)$ prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
(05 Marks)

Module-3

5 a. A particle moves on the curve $\mathrm{x}=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{2}-4 \mathrm{t}, \mathrm{z}=3 \mathrm{t}-5$, where t is the time. Find the components of velocity and acceleration at $t=1$ in the direction of $\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$.
(05 Marks)
b. Find the constant a so that $\overrightarrow{\mathrm{F}}=\mathrm{y}\left(\mathrm{ax}{ }^{2}+\mathrm{z}\right) \hat{\mathrm{i}}+\mathrm{x}\left(\mathrm{y}^{2}-\mathrm{z}^{2}\right) \hat{\mathrm{j}}+2 \mathrm{xy}(\mathrm{z}-\mathrm{xy}) \hat{\mathrm{k}}$ is solenoidal.
(05 Marks)
c. Prove that $\nabla \times(\phi \overrightarrow{\mathrm{A}})=\phi(\nabla \times \overrightarrow{\mathrm{F}})+(\nabla \phi) \times \overrightarrow{\mathrm{F}}$
(06 Marks)
OR
6 a. Find the directional derivative of $\phi(x . y . z)=x^{2} y z+4 x z^{2}$ at the point $(1,-2,-1)$ in the direction of the vector $2 \hat{i}-\hat{j}-2 \hat{k}$.
(05 Marks)

15MAT11
b. Show that the vector field $\vec{F}=(z+\sin y) \hat{i}+(x \cos y-z) \hat{j}+(x-y) \hat{k}$ is irrotational. Also find the scalar function ϕ such that $\overrightarrow{\mathrm{F}}=\nabla \phi$.
(06 Marks)
c. Prove that $\operatorname{div}(\operatorname{curl} \overrightarrow{\mathrm{F}})=0$

Module-4

7 a. Obtain the reduction formula of $\int_{0}^{\pi / 2} \sin ^{n} x d x$
(05 Marks)
b. Solve $\frac{d y}{d x}+\frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0$
(05 Marks)
c. Show that the family of ellipses $\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1 \quad$ is self-orthogonal. (a and b are constants and λ is parameter).
(06 Marks)

OR

8 a. Evaluate $\int_{0}^{\pi} x \sin ^{4} x \cos ^{2} x d x$
(05 Marks)
b. Solve $\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y$.
(06 Marks)
c. Show that the family of curves $y^{2}=4 a(n+a)$ is self orthogonal.
(05 Marks)

Module-5

9 a. Find the rank of the matrix by reducing it to echelon form. Given

$$
A=\left[\begin{array}{cccc}
1 & 3 & -1 & 2 \\
0 & 11 & -5 & 3 \\
2 & -5 & 3 & 1 \\
4 & 1 & 1 & 5
\end{array}\right]
$$

(05 Marks)
b. Solve the following system of equation by Gauss-Seidel method.

$$
\begin{gathered}
20 x+y-2 z=17 \\
3 x+20 y-z=-18 \\
2 x-3 y+20 z=25
\end{gathered}
$$

(06 Marks)
c. Use power method to find the largest eigen value and the corresponding vector

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right], \quad X_{0}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

(05 Marks)

10 a. Solve by Gauss elimination method

$$
\begin{gathered}
x+2 y+z=3 \\
2 x+3 y+2 z=5 \\
3 x-5 y+5 z=2
\end{gathered}
$$

(05 Marks)
b. Show that the transformation

$$
\begin{aligned}
& y_{1}=2 x_{1}-2 x_{2}-x_{3} \\
& y_{2}=-4 x_{1}+5 x_{2}+3 x_{3} \\
& y_{3}=x_{1}-x_{2}-x_{3}
\end{aligned}
$$

is regular and find the inverse transformation.
(05 Marks)
c. Reduce the Quadratic form
$3 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{3}+2 x_{1} x_{2}+2 x_{1} x_{3}-2 x_{2} x_{3}$ into canonical form and indicate the nature, rank, index and signature of the Quadratic form.

